
A Lanczos Method for Approximating Composite

Functions

Paul G. Constantinea,∗, Eric T. Phippsa

aSandia National Laboratories, Albuquerque, NM 87185

Abstract

We seek to approximate a composite function h(x) = g(f(x)) with a global
polynomial. The standard approach chooses points in the domain of f and
computes h(x) at each point, which requires an evaluation of f and an eval-
uation of g. We present a Lanczos-based procedure that implicitly approxi-
mates g with a polynomial of f . By constructing a quadrature rule for the
density function of f , we can approximate h(x) using many fewer evaluations
of g. The savings is particularly dramatic when g is much more expensive
than f or the dimension of x is large. We demonstrate this procedure with
two numerical examples: (i) an exponential function composed with a ratio-
nal function and (ii) a Navier-Stokes model of fluid flow with a scalar input
parameter that depends on multiple physical quantities.

Keywords: dimension reduction, Lanczos’ method, orthogonal
polynomials, Gaussian quadrature

1. Introduction & Motivation

Many complex multiphysics models employ composite functions, where
each member function represents a different physics. A simple example of this
is a chemical reaction model; the decay of the concentration depends on the

∗P.O. Box 5800, MS 1318, Tel: (505) 845-3267, Fax: (505) 845-7442
Email addresses: pconsta@sandia.gov (Paul G. Constantine),

etphipp@sandia.gov (Eric T. Phipps)
1Sandia National Laboratories is a multi-program laboratory managed and operated by

Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security Administration under contract
DE-AC04-94AL85000.

Preprint submitted to AMC September 30, 2011

decay rate parameter, but the model for the decay rate (e.g., the Arrhenius
model) depends on the temperature, the gas constant, the activation energy,
and the prefactor. We consider the general setting

f = f(x), g = g(f), (1)

where x are the inputs to the physics defined by f , and f are the inputs for the
physics defined by g. One may be interested in understanding how g behaves
as x changes, so sensitivity and uncertainty studies can be performed on the
composite function h(x) = g(f(x)). Evaluating h is often a computationally
demanding task, rendering studies that require many evaluations infeasible
– particularly when the dimension of x is large.

In this work, we propose a strategy to take advantage of the composite
structure of h to build surrogate models. The strategy is particularly ad-
vantageous when g(f) is much more expensive to evaluate than f(x). The
essence of the strategy is to use the relatively cheap evaluations of f to
determine a small set of points in its range space to evaluate g. This is es-
pecially applicable when the dimension of x is large – when methods that
require evaluating h at many points in the high dimensional x-space become
infeasible.

The strategy is closely linked to Gaussian quadrature. We implicitly ap-
proximate the density function of f and construct a set of polynomials of
f that are orthonormal with respect to its density function. The function
g is then approximated as a truncated series in these basis polynomials of
f , which is in contrast to the standard methods of approximating h as an
orthonormal polynomial series in x. In the context of uncertainty quantifi-
cation, such polynomial approximations appear under the names polynomial

chaos [1] or stochastic collocation [2], amongst others.
We use a discrete Stieltjes procedure [3] to compute the recurrence coeffi-

cients of the orthogonal polynomials in f , and we show how this is equivalent
to a Lanczos’ method [4, 5] on a diagonal matrix with a weighted inner prod-
uct. The basis vectors from the Lanczos iteration can be used to linearly map
a few evaluations of g(f) to many evaluations of g(f(x)), which can then be
used to study dependence of h on x.

In what follows, we review some preliminaries (Section 2); define the prob-
lem and derive the approximation method (Section 3); and demonstrate its
applicability on two numerical examples: (i) an exponential function com-
posed with a rational function and (ii) a Navier-Stokes model of fluid flow

2

with a scalar input parameter that depends on multiple physical quantities
(Section 4).

2. Preliminaries

In this section, we briefly review Gaussian quadrature and polynomial
approximation, as well as Stieltjes’ and Lanczos’ methods. This will also
serve to set up notation; we choose to follow the notation of Gautschi [3].
Consider a function f : T → R, where the domain T ⊂ R. Let t ∈ T be a
point in the domain. We assume that the domain is equipped with a positive,
normalized weight function ω : T → R+ with finite moments.

2.1. Orthogonal polynomials, Gaussian quadrature, and pseudospectral ap-

proximation

For functions u(t) and v(t), define the inner product

(u, v) ≡
∫

T

u(t) v(t)ω(t) dt (2)

with associated norm ‖u‖ = (u, u)1/2. Let {π̄i(t)} be the set of monic poly-
nomials (i.e., leading coefficient is 1) that are orthogonal with respect to
ω(t),

(π̄i, π̄j) =

{

‖πi‖2, if i = j
0 otherwise.

(3)

The monic orthogonal polynomials satisfy the recurrence relationship

π̄i+1(t) = (t− αi)π̄i(t) − βiπ̄i−1(t), i = 0, 1, 2, . . . , (4)

with π̄−1(t) = 0 and π̄0(t) = 1. The αi and βi are given by

αi =
(tπ̄i, π̄i)

(π̄i, π̄i)
, i = 0, 1, 2, . . . , (5)

βi =
(π̄i, π̄i)

(π̄i−1, π̄i−1)
, i = 1, 2, (6)

It is often more convenient to work with orthonormal instead of monic or-
thogonal polynomials, which we write as

πi(t) =
π̄i(t)

‖π̄i‖
. (7)

3

The recurrence relationship for the orthonormal polynomials becomes
√

βi+1
πi+1(t) = (t− αt)πk(t) −

√

βiπi−1(t), k = 0, 1, 2, (8)

If we consider only the first n equations, then

tπi(t) =
√

βiπi−1(t) + αiπi(t) +
√

βi+1πi+1(t), k = 0, 1, . . . , n− 1. (9)

Setting π(t) = [π0(t), π1(t), . . . , πn−1(t)]
T , we can write this conveniently in

matrix form as
tπ(t) = Jπ(t) +

√

βn πn(t) en (10)

where en is a vector of zeros with a one in the last entry, and J (known as
the Jacobi matrix) is a symmetric, tridiagonal matrix defined as

Jn =

α0

√
β1√

β1 α1

√
β2

. . .
. . .

. . .
√

βn−2 αn−2

√

βn−1
√

βn−1 αn−1

. (11)

The zeros {λj} of πn(t) are the eigenvalues of J and π(λj) are the correspond-
ing eigenvectors; this follows directly from (10). Let Q be the orthogonal
matrix of eigenvectors of J; the elements of Q are given by

Q(i, j) =
πi(λj)

‖π(λj)‖2

, i, j = 0, . . . , n− 1, (12)

where ‖ · ‖2 is the standard 2-norm on R
n. We write the eigenvalue decom-

position of J as
J = QΛQT . (13)

It is known that the eigenvalues {λj} are the nodes of the n-point Gaussian
quadrature rule associated with the weight function ω(t). The quadrature
weight νj corresponding to λj is equal to the square of the first component
of the eigenvector associated with λj ,

νj = Q(0, j)2 =
1

‖π(λj)‖2
2

. (14)

The weights {νj} are known to be strictly positive. It will be notationally
convenient to define the matrix W = diag([

√
ν0, . . . ,

√
νn−1]).

4

For an integrable scalar function f(t), we can approximate its integral by
an n-point Gaussian quadrature rule, which is a weighted sum of function
evaluations,

∫

T

f(t)ω(t) dt =

n−1
∑

j=0

f(λj) νj +R(f). (15)

If f(t) is a polynomial of degree less than or equal to 2n− 1, then R(f) = 0;
that is to say the degree of exactness of the Gaussian quadrature rule is
2n− 1.

A square integrable function f(t) admits a mean-squared convergent in-
finite series expansion – known as the Fourier series – in the orthonormal
polynomials. A pseudospectral approximation of f(t) is constructed by first
truncating its Fourier series at n terms and approximating each Fourier co-
efficient with a quadrature rule. If we use the n-point Gaussian quadrature,
then we can write

f(t) ≈
n−1
∑

i=0

f̂i πi(t) = f̂T
π(t), (16)

where

f̂i =
n−1
∑

j=0

f(λj) πi(λj) νj, (17)

and the vector f̂ contains all coefficient approximations. Let f = [f(λ0), . . . , f(λn−1)]
T .

Then using Q from (13), (16), and (17), we can write

f̂ = QWf f(t) ≈ fTWTQT
π(t). (18)

Note that it is easy to show that the pseudospectral approximation interpo-
lates f(t) at the Gaussian quadrature points.

2.2. Stieltjes’ procedure

Stieltjes proposed a procedure for iteratively constructing a sequence of
polynomials that are orthogonal with respect to a given measure; see [3]. His
method exploits the recurrence relationship for the orthogonal polynomials.
He observed that if one is able to compute the weighted inner product (2), she
may begin with π−1 and π0, compute α0 and β1 from (5) and (6), construct
π1 from (4), compute α1 and β2, construct π2, and so on.

A normalized version of Stieltjes’ method for computing the orthonormal
polynomials and their recurrence coefficients is given in Algorithm 1. The

5

computed αi from Algorithm 1 are equivalent to the expression in (5), and
the computed ηi are equal to

√
βi in (6).

Algorithm 1 A Stieltjes procedure for computing the first n orthonormal
polynomials given a normalized weight function ω(t). Let π−1 = 0 and
π̃0 = 1.

for i = 0 to n− 1 do

ηi = ‖π̃i‖
πi = π̃i/ηi

αi = (tπi, πi)
π̃i+1 = (t− αi)πi − ηiπi−1

end for

Gautschi [3] proposed to use a discrete inner product – e.g., based on a
Gaussian quadrature rule – to approximate the continuous inner product,

(u, v) ≈
m−1
∑

j=0

u(λj) v(λj) νj, (19)

where λj and νj are the points and weights of the discrete inner product. He
reasoned that if the discrete inner product converges to the continuous, then
the recurrence coefficients approximated with the discrete inner product will
also converge. Next we show the relationship between the discretized Stieltjes
procedure and a Lanczos iteration.

2.3. Lanczos method

Lanczos’ popular method [4] for symmetric matrices is the foundation for
iterative eigensolvers and Krylov subspace methods for solving symmetric
linear systems. It generates a symmetric, tridiagonal matrix (the Jacobi
matrix) and a sequence of mutually orthogonal (in exact arithmetic) vectors
known as the Lanczos vectors. The eigenvalues of the tridiagonal matrix –
known as the Ritz values – approximate the eigenvalues of the symmetric
matrix.

In fact, Algorithm 1 is exactly a form of Lanczos’ method2, if we replace
(i) the variable t by a symmetric matrix A of size n×n, (ii) the polynomials

2However, Algorithm 1 has undesirable numerical properties as an implementation.

6

πi(t) by the Lanczos vectors vi, (iii) the starting polynomial π̃0 by a starting
vector ṽ0, and (iv) the inner product by a discrete, weighted inner product.

Suppose that k iterations of the method have been executed. We can
write the recurrence relationship for the Lanczos vectors in matrix notation
as

AV = VT + ηkvke
T
k , (20)

where V = [v0, . . . ,vk−1] is an n × k matrix of Lanczos vectors, T is the
k× k symmetric, tridiagonal Jacobi matrix of recurrence coefficients, and ek

is a last column of the k × k identity matrix.

Theorem 1. The normalized Stieltjes procedure with a discrete, weighted

inner product is equivalent to Lanczos’ method on a diagonal matrix A with

a weighted inner product. Each nonzero element of A is associated with

a point λj of the discrete inner product. The weights of the inner product

amount to scaling the Lanczos vectors.

Proof. To prove this statement, we simply describe the quantities in Algo-
rithm 1 with the discrete inner product. Let f be a function defined on the
points of the discrete inner product, and define A = diag([f(λ0), . . . , f(λm−1)])
to be a diagonal matrix of evaluations of f . The starting polynomial π̃0 = 1
translates to an m-vector of ones, e. To scale properly according the in-
ner product weights, define the starting vector ṽ0 = We, where W =
diag([

√
ν0, . . . ,

√
νm−1]). Let v−1 be an m-vector of zeros. Then the quanti-

ties from Algorithm 1 with the discrete inner product become

ηi =

(

m−1
∑

j=0

π̃i(f(λj))
2νj

)1/2

=
(

ṽT
i ṽi

)1/2

√
νjπi(f(λj)) =

π̃i(f(λj))

ηi
, vi = [

√
ν0πi(f(λ0)), . . . ,

√
νm−1πi(f(λm−1))]

T ,

αi =

m−1
∑

j=0

f(λj)πi(f(λj))
2νj = vT

i Avi,

π̃i+1(f(λj)) = (f(λj) − αi)πi(f(λj)) − ηiπi−1(f(λj)),

which can be written

ṽi+1 = (A − αiI)vi − ηivi−1, (21)

7

with ṽi+1 = [π̃i+1(f(λ0)), . . . , π̃i+1(f(λm−1))]
T . To recover the polynomials,

U = W−1V, (22)

where U(j, i) = πi(f(λj)).

3. Problem set-up and method

Next we apply the Lanczos method to approximate the composite func-
tions describe in the introduction. Define g, f , and x as in (1), where
x ∈ X ⊂ R

d and

f : X −→ F ⊂ R

g : F −→ G ⊂ R.

The function f takes d input parameters denoted by x = (x1, . . . , xd). A
standard polynomial pseudospectral approximation of the composite function
h(x) = f(g(x)) seeks an approximation of the form

h(x) ≈
p−1
∑

i=0

ĥi φi(x), (23)

where the φi(x) are multivariate polynomials (indexed appropriately by i)
that are orthonormal with respect to the measure on X . The coefficients ĥi

are approximations of the spectral coefficients3

ĥi ≈
∫

X

h(x)φi(x) dx, (24)

which are often computed with an appropriate quadrature rule. However,
if the dimension d of the inputs is large, then the truncation grows rapidly
with increasing polynomial degree. Also, the work required to compute ĥi

may grow exponentially with d, which limits this approach to small d and
functions h that are easy to evaluate.

3We use the short-hand dx to denote integration against the measure on X . Similarly,
df signifies integration with respect to the measure on F .

8

We can take advantage of the composite structure in h to approximate g
as a series of polynomials in f , i.e.

g(f) ≈
m−1
∑

i=0

ĝi ψi(f), (25)

where ψi(f) are univariate polynomials that are orthonormal with respect
to the measure on F . Since the polynomials are univariate, the index i
corresponds to the degree of ψi. The coefficients ĝi approximate the spectral
coefficients

ĝi ≈
∫

F

g(f)ψi(f) df. (26)

Notice that the range and measure of the integration is with respect to f .
Let {λj} and {νj} be the points and weights, respectively, of a discrete

inner product defined on the space X , where each λj ∈ R
d. Let

A = diag([f(λ0), . . . , f(λm−1)]), W = diag([
√
ν0, . . . ,

√
νm−1]). (27)

The starting vector is given by ṽ0 = We. Running k steps of the Lanczos
process (with k ≪ m) yields a k×k Jacobi matrix Tf (the subscript f denotes
its relationship to the measure df); this implicitly constructs polynomials
ψi(f) up to order k − 1. The Ritz values (the eigenvalues of Tf) are the
Gaussian quadrature points on the space F , and the weights come from the
first component of the eigenvectors of Tf as in (14); define these points and
weights by θl and µl, respectively, with l = 0, . . . , k − 1. Precisely speaking,
the ψi(f) are orthogonal with resepect to the discrete meaure defined by θl

and µl.
Using the Gaussian quadrature rule for the space F , we can approximate,

for example, the integral of h(x) as
∫

X

h(x) dx =

∫

F

g(f) df (28)

≈
k−1
∑

k=0

g(θl)µl. (29)

We can write the pseudospectral coefficients of (25) as

ĝi =
k−1
∑

l=0

g(θl)ψl(θl)µl (30)

9

Denote the eigendecomposition of Tf by

Tf = QfΘQT
f , Θ = diag([θ0, . . . , θk−1]). (31)

Using similar notation as (18),

ĝ = QfWfg, (32)

where

ĝ = [ĝ0, . . . , ĝk−1]
T ,

Wf = diag([
√
µ0, . . . ,

√
µk−1]),

g = [g(θ0), . . . , g(θk−1)]
T .

We can also use the Lanczos vectors to approximate h(x) at all the points of
the discrete measure on X by the relationship

h ≈ UQfWfg, (33)

where h = [h(λ0), . . . , h(λm−1)]
T and U is defined as in (22). In other words,

the scaled Lanczos vectors transform the approximation defined on the dis-
crete points of F to an approximation defined on the discrete points of X .
Notice that to compute this approximation, we evaluate g(f) only k times, as
opposed to the m times we would need to construct h directly. (Remember
that k ≪ m.) If g is much more expensive than f , than this can produce
dramatic savings.

If the points λj admit a discrete Fourier transform Qx – e.g., they come

from a tensor product Gaussian quadrature rule – then the coefficients of ĥi

from (24) become
ĥ = QxWxh, (34)

where ĥ = [ĥ0, . . . , ĥp−1]
T , and Wx = diag([

√
ν0, . . . ,

√
νp−1]). Using the

approximation (33), we have

ĥ ≈ QxWxUQfWfg, (35)

which permits us to construct a polynomial approximation for the desired
output h(x) with polynomials in the original variables x using only k evalu-
ations of g.

10

3.1. Loss of orthogonality and stopping criteria

We have stated that we expect k ≪ m, or that the number of points in
the discrete measure on F will be much smaller than the number of points
in the discrete measure on X . The number k is the number of iterations of
the Lanczos procedure; how do we know how many iterations to use to get
an accurate approximation of the measure on F?

It is well known that Lanczos’ method in finite precision behaves differ-
ently than the algorithm in exact arithmetic; a thorough treatment of this
subject can be found in Meurant’s excellent monograph [5]. In particular, the
Lanczos vectors lose orthogonality after some number of iterations. When
this occurs, the Ritz values become inaccurate approximations of the eigen-
values. Various techniques exist for dealing with the loss of orthogonality,
and the reader is referred to the wealth of literature on the subject; see [6].

Thanks to the work of Paige and others as described in [5], we know
that the loss of orthogonality is closely related to the convergence of the
Ritz values to the true eigenvalues; loosely speaking, once a Ritz value has
converged to an eigenvalue, the remaining Lanczos vectors lose orthogonality.
It has been observed that in many cases the extremal Ritz values converge
to the extremal eigenvalues fastest depending on the starting vector. From
this we can expect that the Lanczos vectors will lose orthogonality once the
extremal Ritz values are sufficiently close to the extremal eigenvalues. We use
this expectation to motivate a heuristic for stopping the Lanczos iteration.
Further justification of the following heuristic is the subject of on-going work.

In our case, we are not concerned with any particular eigenvalue (or, di-
agonal element of A). In fact, we are only concerned with approximating
the range of the data – which is the range of the function f(x) evaluated
at the points of the discrete inner product – and its corresponding measure.
Therefore, once the extremal Ritz values converge, we are satisfied. Leverag-
ing the work on Lanczos’ method in finite precision, we can judge when the
extremal Ritz values have converged by checking orthogonality of the Lanc-
zos vectors. Essentially, we can treat the loss of orthogonality in the Lanczos
vectors as stopping criteria. We use two measures of loss of orthogonality
given a tolerance τ :

τ1 = log10

(

‖I −VTV‖F

)

> τ τ2 = log10

(

|vT
0 vk|

)

> τ, (36)

where ‖ · ‖F is the Frobenius norm. The first criterion τ1 > τ is more
robust, but significantly more expensive to evaluate. The second τ2 > τ

11

is much cheaper to evaluate, but less reliable. Other efficient measures for
determining loss of orthogonality are discussed in [6, Chapter 9]. In the
following numerical examples, we choose τ = −14.

If the iterations continue beyond this point, we find that the points and
weights of the quadrature rule for the measure on F become less smooth;
this phenomenon is similar to choosing the wrong bin size for a histogram.
In some cases, we observe the familiar (to those who have studied Lanczos’
method) appearance of ghost eigenvalues. If we examine the weights corre-
sponding to pairs of nearly identical Ritz values, we usually find that one
of the weights is orders of magnitude smaller than the other. Of course, we
would prefer to ignore points with very small weights, since this would cor-
respond to a wasted function evaluation in the quadrature approximations.
We demonstrate this phenomena on the following numerical examples.

4. Numerical Examples

We present two numerical studies demonstrating the qualities of the
method. The first is an example with functions chosen to stress the method’s
properties. The second applies the method – as a proof of concept – to a
model from fluid dynamics with a scalar input parameter that depends on
multiple physical quantities.

4.1. Simple functions

Let x = (x1, x2) ∈ [−1, 1]2 with a uniform measure of 1/4 in [−1, 1]2 and
zero otherwise. Given parameters δ1 > 1 and δ2 > 1, define the function

f(x) =
1

(x1 − δ1)(x2 − δ2)
. (37)

Notice that f(x) > 0, and δ1 and δ2 determine how quickly f grows near
the boundary. The closer δ1 and δ2 are to 1, the closer the singularity in the
function gets to the domain, which determines how large f is at the point
(x1 = 1, x2 = 1). For the numerical experiments, we choose δ1 = δ2 = 1.3.
The function f is analytic in x, so we expect polynomial approximations to
converge exponentially as the degree of approximation increases.

Next we choose g(f) = exp(f), so that

h(x) = g(f(x)) = exp

(

1

(x1 − δ1)(x2 − δ2)

)

. (38)

12

(a) Error (b) Orthogonality

Figure 1: Figure 1a plots the error in approximation of h as measured by
(39). Figure 1b shows the loss of orthogonality in the Lanczos vectors using
τ1 from (36).

Again, g(f) is analytic in f , so h(x) is analytic in x, as well.
We choose the discrete measure on X to be a tensor product Gauss-

Legendre quadrature rule on [−1, 1]2 with m points in each variable, which
results in m2 points and weights. The m2 × m2 diagonal matrix A has
diagonal elements equal to f evaluated at the points of the discrete measure.
To test the quality of the approximation of h(x), we compute

log10 (‖h −UQfWfg‖2) , (39)

where these quantities are defined as in (33). In Figure 1, we plot both the
error metric and the measure of orthogonality of the Lanczos vectors (τ1 in
(36)) as m and k increase. To read these plots, choose m from the y-axis to
determine the number of quadrature points in the discrete measure on X ,
then follow the plot to the right to increase the Lanczos iteration k.

In Figure 2, we plot a series of bar graphs of the quadature weights µl

at points θl for the measure on F computed with a m2 = 81 point Gauss-
Legendre quadrature rule on X . While the bar plot resembles a histogram,
the comparison between the a histogram and quadrature weights is not pre-
cise. Nevertheless, the series of bar plots demonstrates the behavior of the
weights as the Lanczos iteration index continues beyond the point when the
Lanczos vectors lose orthogonality; the orthogonality measures from (36) are
presented in each plot. We observe that the weights lose smoothness as the

13

(a) k = 5 (b) k = 10

(c) k = 15 (d) k = 20

Figure 2: A series of bar plots showing the weights µl at the points θl for the
quadrature rule on F . The numbers τ1 and τ2 in each plot show the measure
of orthogonality in the Lanczos vectors; they are defined in (36).

Lanczos vectors lose orthogonality; note the weights in the right tail of the
plot.

4.2. Fluid flow example

As an example of applying these Lanczos techniques to an engineering
problem interest, we examine a simple channel flow problem with a scalar
input parameter (the Reynolds number) that depends on multiple physical
quantities (density and viscosity). Consider the two-dimensional rectangular
domain of length L = 1 m and width W = 0.1 m shown in Figure 3. Water
flows into the left side of the domain with a horizontal velocity of u0 = 0.01

14

u = 0

u = 0

u = (u0, 0) WL

Figure 3: Fluid flow domain

m/sec, and we are interested in computing the velocity of the flow out of the
domain on the right side.

At room temperature and standard pressure, the dynamics of the fluid
within the domain are well-modeled by the incompressible Navier-Stokes
equations

ρ
∂u

∂t
+ ρ(u · ∇u) − µ∇2u + ∇P = 0, (40)

ρ(∇ · u) = 0, (41)

where u = (ux, uy) is the velocity of the fluid, ρ is the density, µ is the
viscosity, and P is the pressure. Using the inlet flow velocity u0 and the
width W of the domain, the equations are non-dimensionalized resulting in

∂ū

∂t̄
+ ū · ∇̄ū − 1

Re
∇̄2u + ∇̄P̄ = 0, (42)

∇̄ · ū = 0, (43)

where x̄ = x/W , ȳ = y/W , t̄ = tu0/L, ū = u/u0, P̄ = P/(ρu2
0), ∇̄ = ∇/W ,

and

Re =
ρu0W

µ
(44)

is the Reynolds number.
Equations 42-43 are discretized spatially on a mesh of 500 by 50 quadran-

gle cells using the finite element method with piecewise bilinear basis func-
tions for both the velocities and pressures [7]. Given a Reynolds number, the

15

Figure 4: Horizontal flow velocity at mean density and viscosity

resulting nonlinear algebraic equations are solved via Newton’s method using
a GMRES linear solver [8] and incomplete-LU factorization preconditioner.
The resulting flow solution at density ρ = ρ0 = 998.205 km/m3 and viscosity
µ = µ0 = 0.001001 Ns/m2 is shown in Figure 4; the density and viscos-
ity values roughly correspond to water at room temperature and standard
pressure. The calculations were implemented in the Albany [9] simulation
package using numerous solver and discretization packages from the Trilinos
framework [10].

We consider a problem where the ambient temperature and pressure are
uncertain resulting in uncertain density and viscosity. In particular we model
the density and viscosity as uniformly distributed random variables

ρ ∈ [0.99ρ0, 1.01ρ0] (45)

µ ∈ [0.9µ0, 1.1µ0]. (46)

In other words, we assume density varies uniformly by 1% and viscosity varies
uniformly by 10%. In the notation of Section 3, we have

x = (ρ, µ),

f(x) =
1

Re
=

µ

ρu0W
.

The function h(x) = g(f(x)) corresponds to the maximum outflow velocity at
the right side of the domain given fixed values for ρ and µ. Each evaluation of

16

g involves an expensive solution of equations 42-43 – compared to computing
f(x).

For this experiment, we choose a tensor product Gauss-Legendre quadra-
ture rule with 11 points in the range of ρ and 11 points in the range of µ for
a total of 121 points. We use the procedure from Section 3 to approximate
the maximum outflow velocity at all 121 pairs of (ρ, µ) by constructing a
13-point Gaussian quadrature rule for 1/Re. In other words, with only 13
evaluations of g – the expensive flow solver – we can approximate the output
h at 121 points in the parameter space corresponding to x.

To check the error in the approximation, we also compute the maximum
outflow velocity at all 121 combinations of ρ and µ, which enables the com-
putation of (39). With 13 steps of the Lanczos procedure, we have a loss of
orthogonality in the basis vectors of τ1 = −13.14 (see equation (36)). The
error in approximation (equation (39)) is 1.55e-6.

5. Conclusion

We have presented a method for approximating a composite function by
implicitly approximating the outer function as a polynomial of the output
of the inner function. This measure transformation is based on Stieltjes’
method for generating orthogonal polynomials given an inner product, and
it is implemented as Lanczos’ method on a diagonal matrix of inner function
evaluations at the points of a discrete measure. We have developed a heuristic
for when to terminate the Lanczos iteration based on the loss of orthogonality
in the Lanczos vectors – a common phenomenon for the algorithm in finite
precision. The resulting method reduces the number evaluations of the outer
function, which are only required at the Gaussian quadrature points of the
transformed measure. The numerical experiments show the behavior of the
method and the scale of the reduction. In future work, we will explore
a multivariate extension, where the inner function may produce multiple
outputs.

References

[1] D. Xiu, G. Karniadakis, The Wiener-Askey polynomial chaos for
stochastic differential equations, SIAM Journal of Scientific Computing
24 (2002) 619 – 644.

17

[2] D. Xiu, J. S. Hesthaven, High order collocation methods for differential
equations with random inputs, SIAM Journal of Scientific Computing
27 (2005) 1118 – 1139.

[3] W. Gautschi, Orthogonal Polynomials: Computation and Approxima-
tion, Clarendon Press, Oxford, 2004.

[4] C. Lanczos, An iteration method for the solution of the eigenvalue prob-
lem of linear differential and integral operators, Journal of Research of
the National Bureau of Standards 45 (1950) 255 – 282.

[5] G. Meurant, The Lanczos and Conjugate Gradient Algorithms: From
Theory to Finite Precision Computations, SIAM, 2006.

[6] G. H. Golub, C. F. VanLoan, Matrix Computations, 3rd Edition, The
Johns Hopkins University Press, Baltimore, MD, 1996.

[7] J. Shadid, A. Salinger, R. Pawlowski, P. Lin, G. Hennigan, R. Tuminaro,
R. Lehoucq, Large-scale stabilized fe computational analysis of nonlinear
steady-state transport/reaction systems, Comput. Methods Appl. Mech.
Engrg. 195 (2006) 1846–1871.

[8] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, 1996.

[9] R. P. Pawlowski, E. T. Phipps, A. G. Salinger, S. J. Owen, C. Siefert,
M. L. Staten, Applying template-based generic programming to the sim-
ulation and analysis of partial differential equations, Submitted to Jour-
nal of Scientific Programming.

[10] M. Heroux, R. Bartlett, V. Howle, R. Hoekstra, J. Hu, T. Kolda,
R. Lehoucq, K. Long, R. Pawlowski, E. Phipps, A. Salinger, H. Thorn-
quist, R. Tuminaro, J. Willenbring, A. Williams, K. Stanley, An
overview of the Trilinos package, ACM Trans. Math. Softw. 31 (3),
http://trilinos.sandia.gov/.

18

